
Manipulation durch Mitwirkung:
Sicherheitsrisiko Social-Engineering
im Open-Source-Kontext

Fokusbericht 01
20.01.2026

Sophia Schulze Schleithoff & Judith Fassbender

Fokusbericht 01
Prototype Fund

2

Inhalt

1 Einleitung..3

2 Social-Engineering als Angriffsmuster in der kollaborativen

Softwareentwicklung...5

3 Maßnahmen zur Risikoreduktion..9

3.1 Projektebene: Governance in Open-Source-Projekten................9

3.1.1 Regeln und Strukturen...10

3.1.2 Technische Sicherheitsmaßnahmen..................................11

3.1.3 Projektpraxis in vom Prototype Fund geförderen
Projekten..13

3.2 Plattformebene: Sicherheitsfokusierte Gestaltung von
Softwareentwicklungsplattformen am Beispiel von GitHub......15

3.2.1 Moderation...15

3.2.2 Reputationsmechanismen..17

3.2.3 Bedürfnisse in durch den Prototype Fund geförderten
Projekten..19

3.3 Policyebene: Regulierung, Aufbau von Kapazitäten und
Förderung..19

3.3.1 Gesetzgebung — Cyber Resilience Act..............................19

3.3.2 Aufbau von Kapazitäten und ideelle Förderung................20

3.3.3 Finanzielle Förderung von Softwareinfrastruktur.............22

3.3.4 Übergeordnete Kommentare zu Herausforderungen aus
Workshop und Interviews...23

4 Fazit..25

Fokusbericht 01
Prototype Fund

3

1 Black Duck Software, Inc. (2025). 2025 Open Source Security and Risk Analysis Report.
https://www.blackduck.com/content/dam/black-duck/en-us/reports/rep-ossra.pdf.

2 Snyk Ltd. (2024, S. 10). The State of Open Source. https://snyk.io/de/lp/state-of-open-source-
2024/

3 Sonatype Inc. (2024). 2024 in Open Source Malware Report. https://www.sonatype.com/
resources/whitepapers/2024-open-source-malware-threat-report

Synopsis Inc. (2024). 2024 Open Source Security and Risk Analysis Report.
https://static.carahsoft.com/concrete/files/1617/1597/8665/2024_Open_Source_Security_and_Ri
sk_Analysis_Report_WRAPPED.pdf

1 Einleitung

Open-Source-Softwarekomponenten finden zunehmend Verbreitung in Anwendungen
aller Art — von Softwarebibliotheken, hin zu Benutzer*innenoberflächen oder kompletten
Anwendungen. Eine im Jahr 2025 veröffentlichte Studie von Black Duck Software, Inc.
zeigt beispielsweise, dass Open-Source-Komponenten in 97% der untersuchten
Softwareprojekte verschiedener Branchen vorkommen. Die Anzahl von Open-Source-
Komponenten pro Projekt hat sich darüber hinaus in den letzten vier Jahren
durchschnittlich verdreifacht.1 Eine Begleiterscheinung dieses Erfolgs ist, dass Open-
Source-Softwarekomponenten ein immer attraktiveres Ziel für Angriffe werden. Zudem
werden die Folgen eines erfolgreichen Angriffs durch die zunehmende Verbreitung immer
gravierender. Entwickler*innen von Open-Source-Software beheben kritische
Sicherheitslücken zwar heute schneller als in den vergangenen Jahren — auch im Vergleich
zu proprietärer Software;2 gleichzeitig ist jedoch auch die Zahl gezielter Angriffe und
riskanter Sicherheitslücken in Open-Source-Software erheblich gestiegen.3

Zuletzt wurden im Entwicklungsprozess von Open-Source-Softwareprojekten vermehrt
Social-Engineering-Angriffe bekannt. Dabei handelt es sich um Angriffe, die gezielt die
offenen Kollaborationsprozesse dieser Projekte ausnutzen, um Vertrauen in deren
Entwickler*innen-Community zu gewinnen und unbemerkt Schadsoftware oder
Sicherheitslücken einzufügen. Gerade Infrastrukturkomponenten, wie sie der Prototype
Fund schwerpunktmäßig fördert, sind aufgrund ihrer potenziell weiten Verbreitung als
Grundbausteine prädestiniert für solche Angriffe. Gelingt es Angreifer*innen, Lücken in
Infrastrukturkomponenten einzubauen, werden potenziell Softwareprojekte, die diese
kompromittierten Bausteine integrieren, ebenfalls Teil des Angriffsziels — in solchen Fällen
spricht man von Supply-Chain-Angriffen. Komponenten, die in Softwareprojekten verbaut
werden, wie etwa Bibliotheken, Protokolle oder APIs, werden Dependencies genannt. Je
mehr Projekte auf einer kompromittierten Dependency aufbauen, desto größer der
potenzielle Schaden; je mehr Dependencies in einem Projekt verbaut sind, desto größer
die Angriffsfläche des Projekts.

Besondere Aufmerksamkeit erlangte 2024 ein Social-Engineering-Angriff auf das freie xz-
Utils-Paket, mit dem sich Daten komprimieren lassen und das Teil der meisten Linux-
Distributionen ist. Bekannt geworden war der Fall, nachdem ein Entwickler bei Microsoft
eine Backdoor in dem Softwarepaket entdeckt hatte, die ein*e Entwickler*in mit zentraler

https://www.blackduck.com/content/dam/black-duck/en-us/reports/rep-ossra.pdf
https://snyk.io/de/lp/state-of-open-source-2024/
https://snyk.io/de/lp/state-of-open-source-2024/
https://www.sonatype.com/resources/whitepapers/2024-open-source-malware-threat-report
https://www.sonatype.com/resources/whitepapers/2024-open-source-malware-threat-report
https://static.carahsoft.com/concrete/files/1617/1597/8665/2024_Open_Source_Security_and_Risk_Analysis_Report_WRAPPED.pdf
https://static.carahsoft.com/concrete/files/1617/1597/8665/2024_Open_Source_Security_and_Risk_Analysis_Report_WRAPPED.pdf

Fokusbericht 01
Prototype Fund

4

4 Roose, Kevin (03.04.2024). Did One Guy Just Stop a Huge Cyberattack?, The New York Times.
https://www.nytimes.com/2024/04/03/technology/prevent-cyberattack-linux.html

5 Bundesamt für Sicherheit in der Informationstechnik (2024). Kritische Backdoor in XZ für Linux.
https://www.bsi.bund.de/SharedDocs/Cybersicherheitswarnungen/DE/2024/2024-223608-
1032.pdf?__blob=publicationFile&v=5

Stellung im xz-Utils-Projekt zuvor selbst in dieses eingebracht hatte. Analysen der
Interaktionen im Projekt zeigten, dass dem Angriff mehrere Jahre strategische Mitarbeit
im xz-Utils-Projekt vorausgegangen waren, die dazu dienten, Vertrauen aufzubauen und
eine zentrale Position in der Governance des Projekts zu erlangen. Die in Open-Source-
Projekten übliche prinzipielle Offenheit gegenüber neuen Beitragenden diente so als
Einfallstor für einen Angriff, der hunderte Millionen Computer weltweit hätte betreffen
können.4 Das Bundesamt für Sicherheit in der Informationstechnik (BSI) stufte den Vorfall
auf Stufe „3/Orange“ von vier möglichen Stufen ein, die wie folgt spezifiziert wird: „Die IT-
Bedrohungslage ist geschäftskritisch. Massive Beeinträchtigung des Regelbetriebs.“5
Der xz-Utils-Fall zeigt, wie die kollaborative Arbeit in der Entwicklung von (Freier-)Open-
Source-Software (FOSS) unter bestimmten Umständen als Einfallstor für Angreifende
dienen kann. In diesem Bericht wird es daher darum gehen, wie unterschiedliche
Akteur*innen Maßnahmen ergreifen, um Sicherheitslücken zu schließen und welche
Hürden in diesem Zusammenhang überwunden werden müssen. Auf dieser Basis werden
im Fazit zudem Handlungsempfehlungen diskutiert.

Überblick und Vorgehen des Berichts
Vor dem Hintergrund des steigenden Risikos für Social-Engineering-Angriffe beleuchten
wir im Folgenden, auf welchen Ebenen Maßnahmen von welchen Akteur*innen ergriffen
werden, um mit diesem Risiko umzugehen. Um die Thematik weiter in den Kontext des
Prototype Fund einzuordnen, haben wir Interviews mit geförderten
Projektverantwortlichen geführt und einen Austauschworkshop mit Personen aus dem
Umfeld des Chaos Computer Clubs durchgeführt.

In Abschnitt 2 führen wir in den Kontext von Social-Engineering-Angriffen ein. Am
Beispiel des xz-Utils-Angriffs zeigen wir auf, inwiefern die kollaborative Arbeitsweise in
Open-Source-Projekten eine Angriffsfläche für gezielte Manipulation bietet. Darauf folgt
Abschnitt 3, in dem wir konkrete Maßnahmen auf drei unterschiedlichen Ebenen
behandeln: die Projektebene (3.1), die sicherheitsorientierte Gestaltung von
Softwareentwicklungsplattformen (3.2) am Beispiel von GitHub und die Policyebene
(3.3), auf der es um übergeordnete Maßnahmen in der Gesetzgebung und Förderung geht.
Im letzten Abschnitt (4) ziehen wir ein Fazit, wie die Ebenen miteinander im Einklang
stehen und an welchen Stellen sich besonderer Handlungsbedarf und Fragen auftun.

Interviews und Workshop
Für die Einbettung des Themas in den Kontext des Prototype Fund haben wir im August
und September 2025 Interviews mit sechs Projektverantwortlichen und Maintainer*innen
von durch den Prototype Fund geförderten Projekten geführt und qualitativ ausgewertet.
Bei den Projekten handelte es sich vorwiegend um Projekte mit Sicherheitsfokus, mit
Kernteams von 3-10 Personen. Abgefragt wurden die Beschaffenheit und Verbindung zu
Beitragendencommunity, etwaige Veränderungen in der Wahrnehmung der

https://www.nytimes.com/2024/04/03/technology/prevent-cyberattack-linux.html
https://www.bsi.bund.de/SharedDocs/Cybersicherheitswarnungen/DE/2024/2024-223608-1032.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Cybersicherheitswarnungen/DE/2024/2024-223608-1032.pdf?__blob=publicationFile&v=5

Fokusbericht 01
Prototype Fund

5

6Goodin, Dan (02.04.2024). The XZ Backdoor: Everything You Need to Know, Wired.
https://www.wired.com/story/xz-backdoor-everything-you-need-to-know/

7 Przymus, Piotr; Durieux, Thomas (2025, S. 92ff.). Wolves in the Repository: A Software Engineering
Analysis of the XZ Utils Supply Chain Attack, 2025 IEEE/ACM 22nd International Conference on

Sicherheitslage für die Projekte nach dem xz-Utils-Fall, der Umgang mit Vertrauens- und
Sicherheitsfragen und das Ideal von Communityarbeit und Sicherheit.

Im September 2025 haben wir zudem unter dem Titel „A conversation on approaches to
prevent social engineering security attacks“ einen Workshop auf der Chaos Computer
Club Veranstaltung InselChaos 2025 auf Rügen durchgeführt. Mit den über zehn
Teilnehmenden, wurden die Passung formalisierter Ansätze, Erfahrungen im Umgang mit
Social-Engineering-Angriffen sowie Bedürfnisse nach neuen beziehungsweise anderen
Ansätzen diskutiert. Unter den Teilnehmenden waren Forschende, Mitarbeiter*innen von
Stiftungen mit FOSS-Fokus, Entwickler*innen und Systemadministrator*innen aus
unterschiedlichen Unternehmen, Nutzer*innen von Open-Source-Software-Komponenten
und Verwaltungsmitarbeiter*innen. Während des Workshops wurde eine Mitschrift erstellt
und für diesen Bericht qualitativ ausgewertet.

Folgende Aspekte wurden ausgewertet: Maßnahmen die in den Projekten ergriffen
werden; benötigte Unterstützung und Bedürfnisse, übergeordnete Aussagen zum Problem
von Social-Engineering-Angriffen.

2 Social-Engineering als Angriffsmuster in
der kollaborativen Softwareentwicklung

Das Vorgehen der Angreifenden im xz-Utils-Projekt zeigt, wie moderne Social-Engineering-
Angriffe im Kontext der Softwareentwicklung ablaufen können und wie typische
Entwicklungsvoraussetzungen in Open-Source-Projekten, aber auch aktuelle politische
und technische Entwicklungen, sie begünstigen.

Neue Angriffsmuster in Open-Source-Projekten
Das angegriffene xz-Utils-Projekt, stellt eine Softwarebibliothek in der Form einer
Sammlung von Open-Source-Tools bereit. Diese Softwarebibliothek ist ein Teil von vielen
Linux-Betriebssystemen und dafür verantwortlich Daten zu komprimieren und zu
dekomprimieren.6 Wieso ein solcher Baustein für einen Angriff ausgewählt wurde
erschließt sich nicht gleich. Das xz-Utils-Paket wurde im Sinne einer Supply-Chain-Attacke
angegriffen, da es mit zwei kritischen Softwarekomponenten agiert, auf die durch den
Angriff zugegriffen werden sollte. Die eine Komponente, OpenSSH, stellt verschlüsselte
Verbindungen zu (remote) Servern her. Die andere Komponente, systemd, startet und
stoppt Prozesse in Linux Betriebssystemen. Durch einen kombinierten Angriff auf beide
Komponenten innerhalb der xz-Utils-Bibliothek, kann der Authentifizierungsprozess von
verschlüsselten SSH-Verbindung umgangen werden.7 Die Angreifenden hätten so

https://www.wired.com/story/xz-backdoor-everything-you-need-to-know/

Fokusbericht 01
Prototype Fund

6

Mining Software Repositories (MSR), Ottawa, ON, Canada, S. 91-102. https://doi.org/10.1109/
MSR66628.2025.00026

8Goodin, Dan (02.04.2024). Siehe Fußnote 6.

9Przymus, Piotr; Durieux, Thomas (2025, S. 92ff.). Siehe Fußnote 7.

10Bosu, Amiangshu; Carter, Jeffrey C. (2014). Impact of developer reputation on code review
outcomes in OSS projects: an empirical investigation, ESEM ‘14: Proceedings of the 8thACM/IEEE
International Symposium on Empirical Software Engineering and Measurement 3, S. 1-10. https://
doi.org/10.1145/2652524.2652544

11Prymus & Durieux (2025, S. 94f.). Siehe Fußnote 7.

12Bressers, Josh (28.08.2025). Open Source is one person, Open Source Security.
https://opensourcesecurity.io/2025/08-oss-one-person/

13Prymus & Durieux (2025, S. 94f.). Siehe Fußnote 7.

14Prymus & Durieux (2025, S. 98). Siehe Fußnote 7.

Schadcode auf Server und andere Computer hochladen und ausführen können, und diese
so fernsteuern können. Die Schäden, die dadurch entstehen könnten sind umfangreich,
Vermutungen reichen von der Einbringung weiter Schadsoftware bis hin zu
Cryptodiebstahl.8

Im Zentrum des Angriffs auf xz-Utils stand dessen bis dahin einziger Maintainer, der als
solcher alleinige Verantwortung dafür trug, Projektziele zu definieren, Beiträge zu
verwalten und Beitragende zu koordinieren. Während die Art, auf die die Backdoor in xz-
Utils eingeschleust wurde, technologischer Natur war, bestand der größte Teil an
Vorbereitung aus vertrauensbildenden Maßnahmen innerhalb des Softwareprojekts. Dazu
gehörten Codebeiträge, die Überprüfung der Beiträge anderer Entwickler*innen sowie die
Übernahme nicht-technischer Aufgaben.9 Der/die Angreifende nutzte insofern gezielt
Dynamiken in Open-Source-Softwareprojekten aus. Man geht davon aus, dass die
Beiträge von Kernentwickler*innen mit einer durch vorherige Beiträge aufgebauten
Reputation schneller und häufiger angenommen werden als diejenigen von unbekannten
Entwickler*innen.10 Bereits nach einem Jahr erhielt er/sie auf diese Weise Schreibrechte
für das Projekt. Kurze Zeit später wurde der/die Angreifende Maintainer*in, erhielt also
noch weitreichendere Rechte innerhalb des Projekts. Der Schritt zur Übertragung von
Maintainer*innen-Rechten wurde durch weitere Beitragende zum Projekt unterstützt, bei
denen es sich mutmaßlich um sogenannte Sockenpuppen-Accounts handelte — dabei
handelt es sich um zu diesem Zweck angelegte Fake-Accounts. Diese übten Druck auf den
bis dahin alleinigen Maintainer aus11 und machten sich zunutze, dass die Verantwortung
für weitreichende Entscheidungen bei nur einer Person lag. Eine solche Unterbesetzung
stellt in vielen Open-Source-Projekten ein indirektes Sicherheitsrisiko da. Open-Source-
Projekte sind häufig Ein-Personen-Projekte.12 Aufgefallen ist der Angriff bei Microsoft,
mehr oder minder zufällig. Aufgrund einer ungewöhnlich hohen CPU-Auslastung in einem
Teilprozess, stellte der bereits erwähnte Entwickler Nachforschungen an und konnte den
Angriff so aufdecken.13Da die Backdoor verhältnismäßig schnell gefunden wurde und kein
Schadensfall bekannt ist, geht man davon aus, dass der Angriff nicht erfolgreich war.14

https://doi.org/10.1109/MSR66628.2025.00026
https://doi.org/10.1109/MSR66628.2025.00026
https://doi.org/10.1145/2652524.2652544
https://doi.org/10.1145/2652524.2652544
https://opensourcesecurity.io/2025/08-oss-one-person/

Fokusbericht 01
Prototype Fund

7

15Greenberg, Andy; Burgess, Matt (03.04.2024). The Mystery of ‘Jia Tan,’ the XZ Backdoor
Mastermind, Wired. https://www.wired.com/story/jia-tan-xz-backdoor/.

16Sonatype Inc. (08.07.2025). Open Source Malware Index Q2 2025: Data exfiltration remains a
leading threat, Sonatype Blog. https://www.sonatype.com/blog/open-source-malware-index-
q2-2025

17Przymus & Durieux (2025, S. 97). Siehe Fußnote 7.

Bemerkenswert ist der Angriff auch deshalb, weil dafür erhebliche zeitliche Kapazitäten,
strategisches Kalkül und technische Kenntnisse erforderlich waren. Zwar konnte bislang
nicht geklärt werden, wer hinter dem über mehrere Jahre sorgfältig vorbereiteten Angriff
steckt; aufgrund des beträchtlichen Ressourceneinsatzes wird allerdings vermutet, dass
staatliche Akteur*innen dafür verantwortlich sein könnten.15 Auch andere Angriffe auf
Open-Source-Softwarepakete werden staatlichen Akteur*innen zugeordnet. Ein Beispiel
sind eine Reihe von 2025 bekannt gewordenen schädlichen Paketen, die im Verdacht
stehen von der durch Nordkorea unterstützten Lazarus-Gruppe in Umlauf gebracht
worden zu sein.16 Nicht nur für kommerziell motivierte, sondern mutmaßlich auch für
staatliche Akteur*innen scheinen Angriffe auf Open-Source-Projekte attraktiver zu
werden. Sie verfügen über die erforderlichen Ressourcen für komplexe Social-
Engineering-Angriffe auf Open-Source-Projekte. Nehmen diese Projekte wie xz-Utils eine
zentrale Rolle in Softwarelieferketten ein, kann sich der Einsatz dieser Ressourcen lohnen,
um politische Ziele zu verfolgen.

Auch technische Entwicklungen befördern Social-Engineering-Angriffe. Auffällig ist am
Verhalten des/der Angreifer*in auf xz-Utils, dass neben Beiträgen zum Code des Projekts
in weitaus größerem Umfang nicht-technische Aufgaben wie Dokumentation,
Übersetzungen und Community-Management übernommen wurden. Der Account, von
dem die Backdoor in das Projekt eingefügt wurde, verwendete dabei regelmäßig Software,
um sprachliche Fehler im Code oder in dessen Dokumentation zu identifizieren sowie um
Übersetzungen automatisiert anzufertigen. Die Verfügbarkeit zunehmend leistungsfähiger
KI-Anwendungen ermöglicht es, auch mit vergleichsweise geringem Ressourceneinsatz in
hoher Frequenz zu Open-Source-Projekten beizutragen, um Reputationsmechanismen
auszunutzen — etwa durch automatisiert generierte Codebeiträge, bei denen allerdings
offen bleibt, inwiefern diese einen qualitativ angemessenen Beitrag zu Projekten leisten.
Dadurch werden Social-Engineering-Angriffe auf Open-Source-Entwicklungspraktiken
auch für mehr Akteur*innen ohne Zugang zu personellen Ressourcen in größerem Umfang
leichter umsetzbar.17

Offenheit vs. Sicherheit?
Warum offene und kollaborative Entwicklungsprozesse von Open-Source-Software durch
Social-Engineering-Angriffe unter Druck geraten könnten bzw. eine Abwägung zwischen
Offenheit und Sicherheit vor gezielter Manipulation in Open-Source-Projekten erforderlich
sein könnte, ist erklärungsbedürftig. Eine verbreitete Auffassung ist, dass Open-Source-
Entwicklungspraktiken ein Vorteil für deren Sicherheit sind. Dafür spricht, dass der
veröffentlichte Code für die Allgemeinheit überprüfbar ist und deshalb Sicherheitslücken
leicht erkannt und behoben werden können, oder in den Worten von Eric Raymond: „Given

https://www.wired.com/story/jia-tan-xz-backdoor/
https://www.sonatype.com/blog/open-source-malware-index-q2-2025
https://www.sonatype.com/blog/open-source-malware-index-q2-2025

Fokusbericht 01
Prototype Fund

8

18Raymond, Eric S. (2001, S. 19). The Cathedral and the Bazaar, Revised Edition, O’Reilly: Sebastopol,
CA.

19Payne, Christian (2002, S. 66). On the security of open source software, Information Systems
Journal 12(1), S. 61-78. https://doi.org/10.1046/j.1365-2575.2002.00118.x

20Wen, Shao-Fang; Kianpour, Mazaher; Kowalski, Stewart (2019). An Empirical Study of Security
Culture in Open Source Software Communities, 2019 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), S. 863-870.
https://doi.org/10.1145/3341161.3343520

21Black Duck Software, Inc. (2025, S. 25). Siehe Fußnote 1.

22Thompson, Ken (1984). Reflections on Trusting Trust, Communications of the ACM 27(8), S. 761 -
763. https://doi.org/10.1145/358198.358210

enough eyeballs, all bugs are shallow.“18 Hinzu kommt, dass die in Open-Source-Projekten
üblichen offenen Kommunikationswege und kurzen Veröffentlichungszyklen dazu
beitragen, dass Sicherheitslücken unmittelbar nach Bekanntwerden gemeldet und
geschlossen werden können.19

Ob die Vorteile des offenen und kollaborativen Entwicklungsprozess zum Tragen kommen,
hängt allerdings davon ab, ob der Code tatsächlich überprüft wird und ob
Sicherheitslücken gemeldet und geschlossen werden können. Eine implizite Annahme im
Argument für die Sicherheit von Open-Source-Software ist, dass sich eine ausreichend
große Zahl an Personen mit den notwendigen Ressourcen findet, um den veröffentlichten
Code im Interesse aller zu analysieren. Die Tatsache, dass die Backdoor im xz-Utils-Paket
aufgedeckt wurde, scheint diese Annahme zu bestätigen. Allerdings ist davon auszugehen,
dass ein großer Teil der Nutzenden von Open-Source-Software nicht motiviert oder aus
unterschiedlichen Gründen nicht in der Lage ist, Sicherheitsüberprüfungen durchzuführen.
Eine Umfrage von Wen et al. (2019) unter Open-Source-Softwareentwickler*innen ergab
beispielsweise, dass nur zwei Drittel sich zutrauen, ihre Software effektiv gegen das
Ausnutzen eines Sicherheitsproblems zu schützen.20 Werden Open-Source-
Softwarekomponenten eingebunden, müssen diese regelmäßig aktualisiert und auf ihre
Sicherheit hin überprüft werden, was häufig nicht der gängigen Praxis entspricht. Die
bereits erwähnte Studie von Black Duck Software, Inc. (2025) zeigt, dass die meisten
Codebasen auf veralteten Komponenten aufbauen, für die bereits neuere Versionen zur
Verfügung stehen.21

Zu denjenigen, die motiviert, mit entsprechenden Ressourcen ausgestattet und dazu in
der Lage sind, Sicherheitslücken zu finden und Software zu entwickeln, zählen auch
Personen, die diese für ihre eigenen Zwecke ausnutzen wollen. Ihnen bieten sich eine
Vielzahl von Angriffsmöglichkeiten und das nicht nur im sichtbaren Softwarecode selbst,
sondern auch beim Kompilieren desselben. Wie Ken Thompson 1984 in seinem
wegweisenden Vortrag Reflections on Trusting Trust aufgezeigt hat, ist deshalb letztlich
Vertrauen in die Entwickler*innen von Open-Source-Software und deren Motivation, im
Interesse aller zu handeln, zentral.22 Erschwert wird der Aufbau von Vertrauen dann, wenn,
wie in vielen Open-Source-Softwareprojekten üblich, Personen aus verschiedenen
Kontexten mit losen Verbindungen ehrenamtlich und mit begrenzten zeitlichen und

https://doi.org/10.1046/j.1365-2575.2002.00118.x
https://doi.org/10.1145/3341161.3343520
https://doi.org/10.1145/358198.358210

Fokusbericht 01
Prototype Fund

9

23z. B. Hodgson, Matthew (04.04.2024). Open Source Infrastructure must be a publicly funded
service, Matrix Blog. https://matrix.org/blog/2024/04/open-source-publicly-funded-service/

24Boehm, Mirko; Carter, Hilary; Osborne, Cailean (2025). Pathways to Cybersecurity Best Practices
in Open Source, The Linux Foundation. https://www.linuxfoundation.org/hubfs/LF%20
Research/lfr_cra_031725a.pdf?hsLang=en

25OpenSSF Best Practice Working Group (14.06.2023). Concise Guide for Developing More Secure
Software. https://best.openssf.org/Concise-Guide-for-Developing-More-Secure-Software

26GitHub (o. D.). Security Best Practices for your Project, Stand: 26.04.2025. https://
opensource.guide/de/security-best-practices-for-your-project/

27Bender Ginn, Robin; Arasaratnam, Omkhar (15.04.2024). Open Source Security (OpenSSF) and

finanziellen Ressourcen zusammenarbeiten. Insofern birgt die Offenheit von Open-
Source-Softwareentwicklung auch eine Angriffsfläche für gezielte Manipulation.

Eine bessere Finanzierung von Open-Source-Softwareentwickler*innen, wie sie
insbesondere im Zusammenhang mit dem xz-Utils-Angriff immer wieder gefordert
wurde,23 ist insofern nur ein — wenn auch überaus wichtiger — Teil der Lösung.

3 Maßnahmen zur Risikoreduktion

Instrumente, die zum Schutz vor Social-Engeneering-Angriffen erprobt werden, sind
Governance-Mechanismen in Open-Source-Projekten, das Design von
Softwareentwicklungsplattformen sowie die Förderung und Regulierung von
Softwareprodukten. Im folgenden Abschnitt werden diese näher ausgeführt.

3.1 Projektebene: Governance in Open-Source-
Projekten

Die Governance von Open-Source-Projekten, d. h. die Erwartungen, Regeln, Strukturen
und Praktiken nach denen Entwickler*innen zusammenarbeiten, hat einen entscheidenden
Einfluss darauf, wie Vertrauen hergestellt und Offenheit für neue Beiträge
aufrechterhalten wird. Um die Gestaltung einer entsprechenden Governance zu fördern
wird auf Best Practices als vorbildliche Verfahrensweisen zurückgegriffen.

Spezifische Best Practices für den Umgang mit Social-Engineering spielen in allgemeinen
Leitfäden für Sicherheit in Open-Source-Projekten, wie sie beispielsweise von der Open
Source Security Foundation (OpenSSF),24 der Linux Foundation25 und von GitHub26
veröffentlicht wurden, keine zentrale Rolle. Diese Leitfäden enthalten allerdings auch
Empfehlungen, die vor Social-Engineering-Angriffen schützen können. Weitere
Empfehlungen in Reaktion auf den xz-Utils-Angriff haben die OpenSSF und die OpenJS
Foundation in einem Blogpost veröffentlicht.27

https://matrix.org/blog/2024/04/open-source-publicly-funded-service/
https://www.linuxfoundation.org/hubfs/LF%20Research/lfr_cra_031725a.pdf?hsLang=en
https://www.linuxfoundation.org/hubfs/LF%20Research/lfr_cra_031725a.pdf?hsLang=en
https://best.openssf.org/Concise-Guide-for-Developing-More-Secure-Software
https://opensource.guide/de/security-best-practices-for-your-project/
https://opensource.guide/de/security-best-practices-for-your-project/

Fokusbericht 01
Prototype Fund

10

OpenJS Foundations Issues Alert for Social Engineering Takeovers of Open Source Projects,
OpenSSF Blog. https://openssf.org/blog/2024/04/15/open-source-security-openssf-and-
openjs-foundations-issue-alert-for-social-engineering-takeovers-of-open-source-projects/

28Wen et al. (2019, S. 867). Siehe Fußnote 20.

Inwieweit die Best Practices zur Anwendung kommen, lässt sich anhand von empirischen
Untersuchungen der Governance in Open-Source-Projekten beurteilen. Welche Rolle
Sicherheit in der Open-Source-Governance von Open-Source-Software in der Praxis spielt,
haben beispielsweise Wen et al. 2019 anhand einer Umfrage unter Entwickler*innen von
Softwareprojekten auf GitHub untersucht. Demnach sahen Open-Source-Entwickler*innen
Softwaresicherheit mehrheitlich als wichtig für den Erfolg ihrer Projekte an, vertrauten der
Governance ihrer Community in dieser Hinsicht und erklärten, sich an Richtlinien für
sichere Softwareentwicklung zu halten. Jedoch neigten Entwickler*innen auch dazu, ihren
eigenen Anteil am Aufbau und Erhalt von Sicherheit gering einzuschätzen und fürchten
Zielkonflikte zwischen ihrer Arbeit und Sicherheitsanforderungen.28

Im Folgenden wird ein Überblick über von Open-Source-Organisationen empfohlene Best
Practices zum Umgang mit Social-Engineering-Angriffen in der Open-Source-
Softwareentwicklung gegeben, sowie Studienergebnisse zur Implementierung von
Leitlinien und technischen Sicherheitsmaßnahmen dargestellt.

3.1.1 Regeln und Strukturen
Zentral ist zunächst die Empfehlung, Angriffe zu dokumentieren und relevante
Informationen zu veröffentlichen. Ziel ist dabei, sowohl die Projekt-Community als auch
andere Open-Source-Entwickler*innen — insbesondere solche, die auf dem betroffenen
Projekt aufbauen — transparent über Vorgänge und Risiken zu informieren. Das genaue
Vorgehen sollte in einer Sicherheitsrichtlinie festgehalten und an prominenter Stelle
veröffentlicht sein. Außerdem wird dazu geraten, die Kontaktinformationen der im Projekt
mit Sicherheitsfragen befassten Personen offen zur Verfügung zu stellen.

In Bezug auf Rollen und Verantwortlichkeiten empfehlen die Best-Practice-Leitfäden
grundsätzlich verschiedene Personen an Entscheidungen z. B. über die Annahme von
Codebeiträgen zu beteiligen, um Risiken zu reduzieren. Die Zuständigkeit für
Sicherheitsfragen sollte ausdrücklich einer Person bzw. einem Team übertragen werden.
Eine weitere Best Practice für individuelle Entwickler*innen ist es, regelmäßig das eigene
Verhältnis zu anderen am Projekt beteiligten Personen sowie deren Aktivität zu überprüfen,
um deren Vertrauenswürdigkeit besser einschätzen zu können.

Implementierung von Regeln und Strukturen in Open-Source-
Projekten
Explizite Regeln und Strukturen für IT-Sicherheit gibt es in Open-Source-Projekten häufig
nicht. In der erwähnten Studie von Wen et al. (2019) wurden 254 Entwickler*innen befragt.
Es zeigte sich, dass nur etwa die Hälfte der Projekte über allgemeine Richtlinien und
Anleitungen für den Umgang mit sicherheitsrelevanten Themen wie Meldeverfahren für
Schwachstellen, IT-Sicherheitstests und sicheren Entwicklungspraktiken verfügte. Zudem
zeigte die Studie, dass in vielen Projekten auch keine Personen vorhanden waren, die

https://openssf.org/blog/2024/04/15/open-source-security-openssf-and-openjs-foundations-issue-alert-for-social-engineering-takeovers-of-open-source-projects/
https://openssf.org/blog/2024/04/15/open-source-security-openssf-and-openjs-foundations-issue-alert-for-social-engineering-takeovers-of-open-source-projects/

Fokusbericht 01
Prototype Fund

11

29Wen et al. (2019, S. 867f.). Siehe Fußnote 20.

30Wermke, Dominik; Wöhler, Noah; Klemmer, Jan H.; Fourné, Marcel; Acar, Yasemin; Fahl, Sascha
(2022). Committed to Trust: A Qualitiative Study on Security & Trust in Open Source Software
Projects, 43rd IEEE Symposium on Security and Privacy. https://doi.org/10.1109/SP46214.
2022.9833686

speziell mit diesen Themen befasst waren. Spezifische Kommunikationskanäle wie
Mailinglisten oder Foren für sicherheitsrelevante Fragen bestanden in 40% der Projekte.29
Zu ähnlichen Ergebnissen kamen Wermke et al. 2022 in einer Interviewstudie, ebenfalls
mit Entwickler*innen von Softwareprojekten auf GitHub.

Wie Rollen und Verantwortlichkeiten von Beitragenden verteilt sind und wie Beiträge neuer
Entwickler*innen behandelt werden, unterschied sich in den Open-Source-Projekten nach
Angaben der interviewten Entwickler*innen stark und unabhängig von deren Größe.
Während manche Projekte dezentrale Strukturen beschrieben, in denen Beitragenden
bereits nach kurzer Mitarbeit weitreichende Rechte gewährt werden, definierten andere
Projekte ihr Kernteam mit der Befugnis Codereviews durchzuführen und Beiträge
anzunehmen deutlich hierarchischer.

Ein weiteres Ergebnis der Studie von Wermke et al. ist, dass die meisten Open-Source-
Communities ihren Umgang mit Vorfällen, bei denen die Sicherheit des Projekts oder das
Vertrauen zu anderen Entwickler*innen aus der Projekt-Community beeinträchtigt
werden, pragmatisch und erst bei Bedarf festlegen. Mehr als die Hälfte der interviewten
Entwickler*innen hatte eigenen Angaben zufolge noch keine solchen Vorfälle erlebt.
Projekte, in denen es bereits zu Sicherheitsvorfällen gekommen war und die infolge dessen
über spezifische Strategien für den Umgang mit ihnen verfügten, waren häufig größer.
Entwickler*innen kleinerer Projekte berichteten dagegen, sofern bereits relevante
Erfahrungen vorlagen, von dynamischen Einzelfallentscheidungen.30

3.1.2 Technische Sicherheitsmaßnahmen
Empfehlungen für die Umsetzung technischer Sicherheitsmaßnahmen umfassen
Maßnahmen, die dazu dienen, die Identität von Beitragenden zu überprüfen und nur als
ausreichend vertrauenswürdig eingestuften Personen Bearbeitungsrechte zu übertragen.
Eine Best Practice für die Authentisierung, d.h. den Identitätsnachweis, einzelner
Beitragender in Open-Source-Projekten ist die (kryptographische) Signatur von
Codebeiträgen. Entwickler*innen können ihre Autorenschaft an bestimmten Beiträgen
durch die Public-Key-Verschlüsselungsverfahren PGP, SSH und S/MIME nachweisen.

Zudem wird eine effektive Zugriffskontrolle empfohlen, um sicherzustellen, dass
Beitragende in Code-Repositorien nur solche Änderungen vornehmen können, zu denen
sie gemäß der im Projekt zugewiesenen Rollen und Verantwortlichkeiten autorisiert sind.
Mittel für eine solche Zugriffskontrolle sind u. a. eine granulare Rechtevergabe, Multi-
Faktor-Authentifizierung für Personen mit erweiterten Rechten sowie das Einstellen von
Schutzregeln für wichtige Branches, also für Arbeitsbereiche im Versionskontrollsystem
Git. Mögliche Regeln sind beispielsweise, dass Codebeiträge signiert sein müssen, dass

https://doi.org/10.1109/SP46214.2022.9833686
https://doi.org/10.1109/SP46214.2022.9833686
https://onlyoffice.okfn.de/8.2.2-2c7f3d5b8bed67471a5a32ea1ec4e6c9/web-apps/apps/documenteditor/main/index_loader.html?_dc=8.2.2-22&lang=de&customer=ONLYOFFICE&type=desktop&frameEditorId=iframeEditor&isForm=false&compact=true&parentOrigin=https://cloud.okfn.de&uitheme=theme-classic-light&fileType=docx&indexPostfix=_loader#sdfootnote24sym

Fokusbericht 01
Prototype Fund

12

31Przymus & Durieux (2025, S. 99). Siehe Fußnote 7.

32Holtgrave, Jan-Ulrich; Friedrich, Kay; Fischer, Fabian; Huaman, Nicolas; Busch, Niklas; Klemmer,
Jan H.; Fourné, Marcel; Wiese, Oliver; Wermke, Dominik; Fahl, Sascha (2025, S. 8). Attributing Open-
Source Contributions is Critical but Difficult: A Systematic Analysis of GitHub Practices and Their
Impact on Software Supply Chain Security, Network and Distributed System Security (NDSS)
Symposium 2025, San Diego, CA, USA. https://dx.doi.org/10.14722/ndss.2025.240613

33Ladisa, Piergiorgio; Plate, Henrik; Martinez, Matias; Barais, Olivier (2023, S. 1519). SoK: Taxonomy
of Attacks on Open-Source Software Supply Chains, 2023 IEEE Symposium on Security and Privacy
(SP), S. 1509–1526. https://doi.org/10.1109/SP46215.2023.10179304

ein Schreibschutz besteht oder alle Anmerkungen zu einem Beitrag als geklärt markiert
sein müssen, bevor Änderungen übernommen werden können.

Insgesamt scheint die Offenheit des Entwicklungsprozesses durch die empfohlenen
Maßnahmen kaum eingeschränkt. Weder Dokumentation und Information noch eine klare
technische und organisatorische Rollenverteilung unter wachsamen Entwickler*innen
stehen einer offener Kollaboration grundsätzlich im Weg. Allerdings müssen diese
Maßnahmen von einer ausreichend großen Zahl an Entwickler*innen umgesetzt werden.
Verfügt ein Projekt nicht über die Ressourcen dafür, muss eine Abwägung getroffen
werden: Eine Möglichkeit ist ein restriktiverer Umgang mit Beiträgen fremder
Kontributor*innen. Das verspricht mehr Sicherheit, kann aber wertvolle, neue Community-
Mitglieder abschrecken, etwa wenn Reviewprozesse zu langwierig sind.31 Die Priorisierung
offener Entwicklungsprozesse, in denen Kontributor*innen ohne entsprechende
Sicherheitsmaßnahmen ein Vertrauensvorschuss gewährt wird, bringt dagegen
Sicherheitsrisiken mit sich.

Implementierung von technischen Sicherheitsmaßnahmen in Open-
Source-Projekten
Auch technische Maßnahmen, die vor Social-Engineering-Angriffen schützen können,
kommen in Open-Source-Projekten bislang nur teilweise zur Anwendung. Signierte
Codebeiträge finden sich auf GitHub beispielsweise in 72% der Projekte, auf denen
mindestens fünf weitere Projekte aufbauen und die somit als relevanter Teil der
Softwarelieferkette gelten können. Allerdings sind in diesen durchschnittlich nur 5% der
Beiträge signiert, wobei zwischen 2016 und 2023 aber ein Anstieg an Signaturen zu
verzeichnen ist.32 Eine Erklärung für die niedrige Verbreitung von signierten Beiträgen
könnte sein, dass Entwickler*innen das Verhältnis zwischen deren Nutzen und den mit der
Umsetzung verbundenen Kosten im Vergleich zu anderen Schutzmaßnahmen eher gering
einschätzen.33

Zusammenfassend lässt sich sagen, dass die Governance von Open-Source-Projekten zur
Vermeidung von Social-Engineering-Angriffen häufig schwach ausgeprägt ist, obwohl
grundsätzlich ein Bewusstsein für die Bedeutung von Sicherheitsmaßnahmen besteht.
Eine wichtige Rolle beim Aufbau von Governancestrukturen spielen insbesondere in kleinen
und neuen Projekten der damit verbundene Aufwand sowie Konsequenzen für die
Offenheit des Projekts. Letztlich besteht die Tendenz, die Offenheit gegenüber neuen
Beitragenden höher zu gewichten als den Schutz vor etwaigen Sicherheitsrisiken. Das
dürfte auch damit zusammenhängen, dass viele Open-Source-Entwickler*innen noch

https://dx.doi.org/10.14722/ndss.2025.240613
https://doi.org/10.1109/SP46215.2023.10179304
https://onlyoffice.okfn.de/8.2.2-2c7f3d5b8bed67471a5a32ea1ec4e6c9/web-apps/apps/documenteditor/main/index_loader.html?_dc=8.2.2-22&lang=de&customer=ONLYOFFICE&type=desktop&frameEditorId=iframeEditor&isForm=false&compact=true&parentOrigin=https://cloud.okfn.de&uitheme=theme-classic-light&fileType=docx&indexPostfix=_loader#sdfootnote26sym

Fokusbericht 01
Prototype Fund

13

34Cable, Jack; Steindler, Zach (02.2024). Principles for Package Repository Security, OpenSSF
Securing Software Repositories Working Group. https://repos.openssf.org/principles-for-
package-repository-security

keine Erfahrung mit Angriffen auf ihre Projekte gemacht haben. Ob diese Gewichtung den
tatsächlichen Risiken gerecht wird, hängt von den spezifischen Eigenschaften eines
Projekts ab. Von einem erhöhten Risiko ist beispielsweise dann auszugehen, wenn ein
Open-Source-Projekt eine Grundlage für viele andere Projekte bietet, also ein relevanter
Teil der Software Supply Chain und somit ein attraktives Ziel für Angreifende ist.

Insofern bieten existierende Best-Practice-Leitfäden zu Sicherheit in Open-Source-
Softwareprojekten zwar einen Startpunkt für den Umgang mit Social-Engineering-
Angriffen; jedoch fehlen bislang spezifische Anleitungen, die eine wirksame Unterstützung
für Projekte mit unterschiedlich großen Communities, in verschiedenen
Entwicklungsstadien und sowohl mit geringem als auch erhöhtem Angriffsrisiko bieten.
Dazu ist erforderlich, dass Leitfäden neben Best Practices auch Hilfestellungen bei der
Auswahl effizienter, den Gegebenheiten eines Open-Source-Projekts entsprechender
Maßnahmen leisten. Ein Beispiel für diesen Ansatz sind die Empfehlungen der
amerikanischen Cybersecurity and Infrastructure Security Agency (CISA) und der OpenSSF
für Repositorien, in denen Softwarepakete verwaltet werden.34 Darin sind entlang vier
verschiedener Projektreifegrade angepasste Empfehlungen formuliert.

3.1.3 Projektpraxis in vom Prototype Fund geförderten Projekten
Um einen Eindruck zu bekommen, wie der Umgang mit dem Risiko von Social-Engineering-
Angriffen in durch den Prototype Fund geförderten Projekten ist, haben wir Interviews mit
sechs Projektverantwortlichen geführt. Im Folgenden fassen wir deren Umgangsweisen
mit Sicherheitsrisiken und Einflussfaktoren aus den Interviews zusammen.

Codereviews in unterschiedlichen Verfahren. Die übergeordneten Maßnahmen, die in
allen Projekten vorgenommen werden, sind rigorose Codereviews und ein restriktiver
Umgang mit der Vergabe von Rechten. In einigen Interviews kam darüber hinaus zur
Sprache, dass möglichst wenige Dependencies eingebaut werden, um Vulnerabilitäten an
dieser Stelle so gering wie möglich zu halten, und dass Tools zur Verwaltung dieser
eingesetzt werden — was jedoch nicht vor potenzieller Schadsoftware in Dependencies
schütze. Zudem werden der Social-Engineering-Angriffe und der xz-Utils-Fall zumeist im
Kontext von Softwarelieferkettenangriffen thematisiert.

In einigen Projekten existieren explizite Regeln dafür, wie mit Pull Requests umgegangen
wird. In einem Projekt mit einer ausgeprägteren Organisationsstruktur müssen
Codebeiträge von einem Security-Team überprüft werden; in einem anderen Projekt
müssen die drei Maintainer*innen die Verantwortung für Codemerger, die sie nach einer
Review durchführen, persönlich übernehmen, als handele es sich um von ihnen selbst
geschriebenen Code.

In den meisten Fällen waren die Verfahrensweisen, die verfolgt werden, jedoch impliziter
— sei es, weil eine Person einzige*r Maintainer*in ist und sich selbst Regeln geben würde,
oder weil Maintainer*innen sich auf ihre langjährige Erfahrung verlassen und daher eine
externe Anleitung für nicht notwendig halten. Ein*e Maintainer*in weist darüber hinaus

https://repos.openssf.org/principles-for-package-repository-security
https://repos.openssf.org/principles-for-package-repository-security

Fokusbericht 01
Prototype Fund

14

explizit darauf hin, dass das Wissen und die Kapazitäten der Projektverantwortlichen
weitaus wichtiger seien als das Festschreiben von Regeln und dass bei Maßnahmen mehr
Wert darauf gelegt werden sollte, diese Kapazitäten in der breiten Masse von
Entwickler*innen auszubauen, um eine nachhaltige kulturelle Veränderung zu bewirken.

Soziale Faktoren im Vertrauensaufbau. Wiederholt wurden soziale und menschliche
Aspekte als wichtiger Faktor in der Bekämpfung von Social-Engineering-Angriffen in den
Projekten hervorgehoben. Zum einen wurde die Etablierung langfristiger Beziehungen zu
Beitragenden unterstrichen. Dazu gehört im Blick zu behalten, wer die Beitragenden sind,
wie lange diese beitragen, aber auch persönlicher Kontakt. Persönliche Treffen auf
Konferenzen und Community-Events wurden mehrfach als wichtige Möglichkeiten
genannt, Vertrauen aufzubauen. Aber auch niedrigschwellige Möglichkeiten, wie
Telefonate, spielen eine Rolle. Gleichzeitig wurde betont, dass auch Personen, die mit
entsprechenden Ressourcen und Fähigkeiten ausgestattet sind, selbst im persönlichen
Kontakt eine falsche Identität vortäuschen könnten —wenn auchmit größerem Aufwand.

Vorsichtiger Umgang mit Call-Outs. Einige Interviewte berichteten von Erfahrung mit
Beitragenden, deren Identität sie nicht kennen, wiesen jedoch darauf hin, dass es für
deren Anonymität gute Gründe geben kann — etwa, wenn Beitragende für Organisationen
tätig sind, die die betreffenden Softwarebausteine selbst nutzen, dies jedoch aus
Sicherheitsgründen nicht öffentlich machen wollen. Nur ein*e Maintainer*in erwähnte die
Praxis auf Personen hinzuweisen, die möglicherweise Angreifer*innen sein könnten. Die
Person unterstrich gleichzeitig, dass dies als eine der letzten Maßnahmen betrachtet
würde und nicht auf Grundlage bloßer Verdachtsfälle geschehen sollte.

Menschliche Fehlbarkeit und Grenzen. In Bezug auf Codereviews und das Finden von
Fehlern wurde ebenfalls mehrfach auf menschliche Aspekte hingewiesen: dass man nach
bestem Wissen und Gewissen arbeite, eine große Verantwortung für die Projekte und
deren Nutzende empfinde, dies jedoch nicht davor schütze, fehlbar zu sein, auch mal einen
schlechten Tag haben zu können. Niemand könne garantieren, dass so nicht auch
sicherheitsrelevante Schwachstellen übersehen würden. Dazu wurde unterstrichen, dass
das Schreiben von Schadcode ungleich viel weniger Aufwand und Zeit erfordere als dessen
Überprüfung im Rahmen eines Reviews. Nicht zuletzt seien Codereviews, auch wenn diese
zentral für die Projektsicherheit sind, keine besonders attraktive oder unterhaltsame
Aufgabe, was deren Notwendigkeit nicht schmälert. Gegenüberstehend zu menschlichen
Kapazitäten wurden automatisiert erstellte Codebeiträge, die minderwertig seien,
gleichzeitig aber die Masse an zu sichtenden Code erhöhe, mehrfach als Problem erwähnt.
Die Frage nach der Machbarkeit von Reviews wird durch den Einsatz von KI-generierten
Beiträgen weiter verschärft.

Ressourcenknappheit. Gerade im Zusammenhang mit der notwendigen Zeit und Sorgfalt
für Codereviews wurde wiederholt auf generelle Ressourcenknappheit verwiesen —
insbesondere auf das Fehlen von Fördermöglichkeiten für explizite Sicherheitsaufgaben
und Maintenance, im Gegensatz zur Förderung für neue Features.

Zusammenfassend lässt sich für die Projekte sagen, dass Codereviews nach dem Vier-
Augen-Prinzip, ein restriktiver Umgang mit der Rechtevergabe sowie die sorgfältige
Integration von Dependencies eine zentrale Rolle spielen. In Bezug auf unterstützende

Fokusbericht 01
Prototype Fund

15

35Tucker, Margaret (20.02.2025). Engaging with the developer community on our approach to
content moderation, GitHub Blog. https://github.blog/news-insights/policy-news-and-
insights/engaging-with-the-developer-community-on-our-approach-to-content-moderation/

36Tucker, Margaret; Coogan, Rose; Pace, Will (2024, S. 3, 7). Nuances and Challenges of Moderating
a Code Collaboration Platform, Journal of Online Trust and Safety 2(4), S. 1-19. https://
doi.org/10.54501/jots.v2i4.213

Maßnahmen werden insbesondere soziale, relationale und menschliche Aspekte
gegenüber prozeduralen, regelbasierten und formalisierten Ansätzen hervorgehoben —
etwa der Aufbau persönlicher Beziehungen in Persona, die Kapazitäten von
Maintainer*innen sowie deren Fehlbarkeit. Damit diese Aspekte schützend wirken können,
ist ein intaktes FOSS-Ökosystem in dem Offline-Treffen stattfinden können, von zentraler
Bedeutung. Solche Treffen sowie Förderung für Maintenance und Sicherheitsmaßnahmen
können jedoch nur mit entsprechender finanzieller Unterstützung realisiert werden. Diese
spielt aber eine grundlegende Rolle für die Sicherheit der Projekte und des gesamten
Ökosystems. Keine dieser Maßnahmen wird als Garant für vollständige Sicherheit
verstanden, ein Restrisiko bleibt stets bestehen. Für eine sinnvolle Unterstützung müssen
allerdings soziale und kulturelle Aspekte in der Zusammenarbeit berücksichtigt und aktiv
eingebunden werden.

3.2 Plattformebene: Sicherheitsfokussierte
Gestaltung von Softwareentwicklungs-
plattformen am Beispiel von GitHub

Softwareentwicklungsplattformen wie GitHub, GitLab und Codeberg stellen die
Infrastruktur dar, innerhalb derer Open-Source-Projekte entwickelt werden. Als solche
ergänzen sie deren Governance und beeinflussen diese insbesondere durch ihre
Moderationspraktiken, Reputationsmechanismen und technischen Sicherheitsfunktionen.
Insofern sind auch Softwareentwicklungsplattformen relevant für die Abwägung zwischen
Sicherheit und Offenheit in Open-Source-Projekten. Die größte
Softwareentwicklungsplattform, auf der auch das Projekt xz-Utils gehostet wird, ist
GitHub. Sie steht deshalb im Folgenden im Fokus.

3.2.1 Moderation
GitHub nimmt eine aktive Rolle bei der Moderation der Plattform ein, insbesondere in
Fragen der Softwaresicherheit. Seit dem xz-Utils-Angriff hat das Unternehmen aktive
Öffentlichkeitsarbeit geleistet, um den gewählten Moderationsansatz bekannt zu machen
und mit Open-Source-Entwickler*innen zu diskutieren.35 GitHub sieht es als seine Aufgabe,
potenzielle Schäden aktiv zu begrenzen, indem es Moderation durch die Communities der
auf GitHub gehosteten Projekte durch Funktionen der Plattform anregt und gleichzeitig
auch selbst moderiert.36 Im Fall des xz-Utils-Angriff bedeutete das, dass GitHub sowohl
das Projekt als auch die Accounts aller Maintainer*innen nach Bekanntwerden der
Sicherheitslücke sperrte. Der Account der Maintainer*in, der/die nicht an dem Angriff

https://github.blog/news-insights/policy-news-and-insights/engaging-with-the-developer-community-on-our-approach-to-content-moderation/
https://github.blog/news-insights/policy-news-and-insights/engaging-with-the-developer-community-on-our-approach-to-content-moderation/
https://doi.org/10.54501/jots.v2i4.213
https://doi.org/10.54501/jots.v2i4.213

Fokusbericht 01
Prototype Fund

16

37Collin, Lasse (o. D.). XZ Utils backdoor, Stand: 17.01.2025. https://tukaani.org/xz-backdoor/

38Tucker et al. (2024, 8ff.). Siehe Fußnote 35.

39GitHub, Inc. (o. D.). Verwalten von Moderatoren in deiner Organisation, Stand: 20.11.2025.
https://docs.github.com/de/organizations/managing-peoples-access-to-your-organization-
with-roles/managing-moderators-in-your-organization

40Tucker et al. (2024, S. 14f.). Siehe Fußnote 35.

41Goled, Shraddha (08.02.2024). When automation errror led to GitHub co-founder’s account
suspension, Techcircle. https://www.techcircle.in/2024/02/08/when-automation-error-led-to-
co-founder-s-github-account-suspension

42GitLab (o.D.). GitLab Acceptable Use Policy, The GitLab Handbook, Stand: 01.05.2025.
https://handbook. gitlab.com/handbook/legal/acceptable-use-policy/

43Codeberg (22.01.2022). Codeberg‘s Terms of Use. https://codeberg.org/Codeberg/org/src/
branch/main/TermsOfUse.md

beteiligt war, wurde kurze Zeit später reaktiviert, die Person reaktivierte das Projekt. Doch
auch danach nahm GitHub Änderungen im Repositorium durch das Schließen von
Änderungsanfragen in Pull Requests vor, ohne transparent zu dokumentieren, dass die
Schließungen nicht vom Projektmaintainer ausgingen.37

GitHub bezeichnet insbesondere die Deaktivierung von Projekten als äußerstes Mittel, dem
gegenüber in der Regel die Moderation durch Projekt-Communities selbst oder andere
Moderationsmethoden von GitHub wie das Ausblenden von individuellen Beiträgen, das
Sperren von Nutzendenaccounts oder das Einschränken der Auffindbarkeit von Projekten
vorzuziehen sei. Änderungen an Code oder sonstigen Inhalten innerhalb von Projekten
nimmt GitHub eigenen Angaben zufolge grundsätzlich nicht vor.38 Wie die Moderation im
Fall des xz-Utils-Projekts zeigt, bedeutet das jedoch nicht, dass keinerlei Änderungen in
Projekten vorgenommen werden. Für die Moderation in Projekten selbst bietet GitHub die
Möglichkeit, Nutzendenaccounts von der Mitarbeit auszuschließen oder Kommentare
auszublenden, zu ändern oder zu löschen.39

Eine wachsende Herausforderung für GitHub, deren Relevanz auch der xz-Utils-Angriff
zeigte, ist der Umgang mit automatisiert generierten Inhalten. Das Unternehmen arbeitet
deshalb zur Zeit am Ausbau der (teil-)automatisierten Plattformmoderation.40 Dass die
Automatisierung von Moderationsentscheidungen allerdings auch Risiken für Nutzende
und ihre Projekte haben kann, zeigte sich beispielsweise, als der Account einer der GitHub-
Gründer eigenen Angaben zufolge im Februar 2024 fälschlicherweise gesperrt wurde.41

Die Moderationsregeln anderer Softwareentwicklungsplattformen ähneln grundsätzlich
denen von GitHub. Auch auf GitLab und Codeberg besteht beispielsweise die Möglichkeit,
dass Plattformbetreiber*innen Beiträge sperren oder löschen, etwa wenn Nutzende sich
in betrügerischer Weise als jemand anderes ausgeben42 oder wenn Nutzendenaktivitäten
den/die Plattformbetreiber*in direkt oder indirekt schädigen.43 Zusätzlich können Projekt-
Communities ihre Projekte z. B. durch den Ausschluss von Beitragenden moderieren. In
welchem Ausmaß die Plattformbetreiber*innen von GitLab und Codeberg von ihren
Moderationsrechten Gebrauch machen, wird nicht veröffentlicht.

https://tukaani.org/xz-backdoor/
https://docs.github.com/de/organizations/managing-peoples-access-to-your-organization-with-roles/managing-moderators-in-your-organization
https://docs.github.com/de/organizations/managing-peoples-access-to-your-organization-with-roles/managing-moderators-in-your-organization
https://www.techcircle.in/2024/02/08/when-automation-error-led-to-co-founder-s-github-account-suspension
https://www.techcircle.in/2024/02/08/when-automation-error-led-to-co-founder-s-github-account-suspension
https://handbook.gitlab.com/handbook/legal/acceptable-use-policy/
https://codeberg.org/Codeberg/org/src/branch/main/TermsOfUse.md
https://codeberg.org/Codeberg/org/src/branch/main/TermsOfUse.md

Fokusbericht 01
Prototype Fund

17

44Gooding, Sarah (26.062024). OpenSSF Warns of Reputation Farming Leveraging Closed GitHub
Issues and PRs, Socket Blog. https://socket.dev/blog/openssf-warns-of-reputation-farming-
using-closed-github-issues-and-prs

45Tucker et al. (2024, 8ff.). Siehe Fußnote 35.

46GitHub, Inc. (o. D.). Verwalten von Moderatoren in deiner Organisation. Stand: 01.06.2025.
https://docs.github.com/ de/organizations/managing-peoples-access-to-your-organization-
with-roles/managing-moderators-in-your-organization

47He, Hao; Yang, Haoqin; Burckhardt, Philipp; Kapravelos, Alexandros; Vasilescu, Bogdan; Kästner,
Christian (2024). 4.5 Million (Suspected) Fake Stars in GitHub: A Growing Spiral of Popularity
Contests, Scams, and Malware, Stand: 18.12.2024. https://doi.org/10.48550/arXiv.2412.13459

3.2.2 Reputationsmechanismen
Reputationsmechanismen, die Open-Source-Entwickler*innen in ihren Entscheidungen
über die Zusammenarbeit mit anderen beeinflussen, werden von
Softwareentwicklungsplattformen aktiv gestaltet. Hilfreich können diese Mechanismen
sein, um beurteilen zu können, wie viel Erfahrung und Kompetenzen neue Beitragende zu
einem Projekt mitbringen. Allerdings besteht das Risiko des sogenannten Reputation
Farming, bei dem Akteure eine Reputation vortäuschen, indem sie entsprechende
Indikatoren auf Entwicklungsplattformen gezielt manipulieren. Anders als im Fall des xz-
Utils-Angriffs, bei dem die Akteure durch tatsächliche, kontinuierliche Mitarbeit über
längere Zeit eine Reputation im Projekt aufbauten, sind die meisten Formen von Reputation
Farming deutlich weniger aufwändig vorbereitet.

Auf eine Form von Reputation Farming machte beispielsweise die OpenSSF im Juni 2024
aufmerksam: Dabei tragen auffällige GitHub-Nutzendenprofile zu bereits gelösten Issues
und Pull Requests in hochrangigen Projekten bei, um ihre Mitarbeit an diesen zu
simulieren.44 Auf ähnliche Weise können automatisiert erstellte Beiträge schnell und ohne
größeren Ressourcenaufwand den Eindruck aktiver, produktiver Mitarbeit an einem
Projekt erwecken. Eine andere Möglichkeit ist es, eigene Beiträge anderen Accounts mit
hoher Reputation zuzuordnen oder Beiträge von Accounts mit hoher Reputation dem
eigenen Account bzw. einem beliebigen Projekt zuzuordnen.45 Zu Profilen, denen viele
GitHub-Nutzende großes Vertrauen entgegenbringen und deren Beiträge sie deshalb nicht
näher überprüfen, gehört Dependabot, ein Tool zur automatisierten Verwaltung von
Softwareabhängigkeiten. 2023 wurde ein Fall bekannt, in dem versucht wurde, u. a. durch
die Maskierung als Dependabot unbemerkt schädlichen Code in hunderte Projekte
einzuschleusen.46 Ein weiteres Einfallstor für Reputation Farming sind Markierungen von
Projekten mit Sternen oder das Folgen von Accounts, um die Mitarbeit an erfolgreichen
Projekten bzw. ein hohes Ansehen unter anderen Entwickler*innen vorzutäuschen.
Insbesondere bei Sternmarkierungen konnte seit 2022 ein signifikanter Anstieg an
mutmaßlichen Fälschungen — Sterne, die beispielsweise gekauft und durch Fake Accounts
vergeben wurden — beobachtet werden.47

Softwareentwicklungsplattformen bieten bereits eine Reihe an Funktionen an, die einen
gewissen Schutz vor Reputation Farming bieten. Bei GitHub gehört dazu neben der
Unterstützung von Signaturen beispielsweise die Möglichkeit, weitere Beiträge zu gelösten
Issues und Pull Requests zu unterbinden. Auch durch ihre eigenen Moderationspraktiken

https://socket.dev/blog/openssf-warns-of-reputation-farming-using-closed-github-issues-and-prs
https://socket.dev/blog/openssf-warns-of-reputation-farming-using-closed-github-issues-and-prs
https://docs.github.com/de/organizations/managing-peoples-access-to-your-organization-with-roles/managing-moderators-in-your-organization
https://docs.github.com/de/organizations/managing-peoples-access-to-your-organization-with-roles/managing-moderators-in-your-organization
https://doi.org/10.48550/arXiv.2412.13459

Fokusbericht 01
Prototype Fund

18

48GitHub (o.D). GitHub-Nutzungsbedingungen, Stand: 16.11.2020. https://docs.github.com/de/ site-
policy/github-terms/github-terms-of-service

49Hamer, Sivana; Imtiaz, Nasif; Tamanna, Mahzabin; Shabrina, Preya; Williams, Laurie (2025).
Trusting code in the wild: Exploring contributor reputation measures to review dependencies in
the Rust ecosystem, IEEE Transactions on Software Engineering 51(4), S. 1319-1333.
https://doi.org/10.1109/TSE.2025.3551664

50Przymus und Durieux (2025, S. 99). Siehe Fußnote 7.

51Holtgrave et al. (2025, S. 13). Siehe Fußnote 31.

gehen Entwicklungsplattformen gegen Reputation Farming vor. Indem GitHub in seinen
Nutzungsbestimmungen Aktivitäten wie das Fälschen von Nutzendenkonten, die
automatisierte Vergabe von Sternen oder das automatisierte Folgen von Nutzenden sowie
automatisierte, nicht-authentische Beiträge ausschließt, behält sich das Unternehmen
beispielsweise vor, entsprechende Accounts und Beiträge von der Plattform zu entfernen.48
Allerdings könnten diese Maßnahmen durch weitere ergänzt werden: Die durch
Plattformen wie GitHub angebotenen Reputationssignale wie Sterne oder Follower
könnten durch komplexere, weniger leicht manipulierbare Signale ersetzt werden. Ein
Vorschlag dafür sind beispielsweise sogenannte Contributor Reputation Badges, die
Faktoren wie Verbindungen zu anderen zentralen Entwickler*innen49 oder Beitragsmuster
im Zeitverlauf50 berücksichtigen. Durch eine Umgestaltung des User Interface – etwa
indem die Verlässlichkeit der Zuordnungen von Beiträgen zu bestimmten Accounts oder
automatisiert erstellte Beiträge transparenter angezeigt werden — könnten Nutzende
dabei unterstützt werden, verdächtige Aktivitäten zu erkennen.51 Um umfassende
Erkenntnisse über die Verbreitung der oben beschriebenen Varianten von Reputation
Farming, deren Nutzung für Social-Engineering-Angriffe und die Gegenreaktionen von
Softwareentwicklungsplattformen zu gewinnen, ist außerdem erforderlich, dass
Informationen über gelöschte Repositorien und Nutzende zur Verfügung gestellt werden.

Insgesamt gewichten Softwareentwicklungsplattformen wie GitHub Sicherheit hoch und
unterstützen Open-Source-Entwickler*innen dabei, Best Practices wie Codesignaturen
und Rollenverteilungen technisch umzusetzen sowie Vertrauen zu anderen
Entwickler*innen durch Reputationsmechanismen aufzubauen. Wie beschrieben
schränken diese Maßnahmen die Offenheit von Projekten nicht zwingend ein, auch wenn
die angebotenen Reputationsmechanismen effektiver gestaltet werden könnten. Potenziell
einschränkend könnten dagegen die Moderationspraktiken von
Softwareentwicklungsplattformen wirken, die die Vermeidung von Sicherheitsrisiken
priorisieren und die Entscheidungen innerhalb von Entwickler*innen-Communities
überlagern können. Das ist insbesondere dann der Fall, wenn Moderationsentscheidungen
automatisiert getroffen werden. Für eine Beurteilung, in welchem Ausmaß es in der Praxis
zu solchen Einschränkungen kommt und inwieweit dabei Aspekte wie das Sicherheitsrisiko
eines Projekts berücksichtigt werden, ist es erforderlich, das
Softwareentwicklungsplattformen transparent über ihre Moderationspraxis informieren.

https://docs.github.com/de/site-policy/github-terms/github-terms-of-service
https://docs.github.com/de/site-policy/github-terms/github-terms-of-service
https://doi.org/10.1109/TSE.2025.3551664

Fokusbericht 01
Prototype Fund

19

52Cyber Resilience Act (2024). Verordnung (EU) 2024/2847 des Europäischen Parlaments und des
Rates vom 23. Oktober 2024 über horizontale Cybersicherheitsanforderungen für Produkte mit
digitalen Elementen, ABl. L 2024/2847 vom 20.11.2024. http://data.europa.eu/eli/reg/2024/
2847/oj

3.2.3 Bedürfnisse in durch den Prototype Fund geförderten
Projekten

Sowohl in den Interviews, als auch im Workshop wird kaum auf die Plattformgestaltung
und die Rolle von Plattformen in der Verhinderung von Social-Engineering-Angriffen
eingegangen.

Spezifische technische Funktionen. Einzelne Projektverantwortliche wünschen sich
jedoch explizite Funktionen, die Prozesse auf Plattformen betreffen; diese betreffen
hauptsächlich das Codemergen und Testläufe.

Auffindbarkeit von Tools. In diesem Zusammenhang wird mehrfach auch angemerkt,
dass man gar nicht wisse, ob es diese Funktionen nicht doch schon gebe; aber falls dem
so sei, wisse man davon nicht. An dieser Stelle sowie in Bezug auf Leitlinien wird mehrfach
darauf verwiesen, dass diese bekannt und auffindbar sein müssten, um Wirkung zu
entfalten.

Etablierung von Sicherheitspraktiken. Darüber hinaus müsste die Nutzung
unterschiedlicher Tools, wie beispielsweise das Signieren von Codebeiträgen, weiter
verbreitet sein, damit Softwarelieferketten sicherer werden; auch hier verweisen die
Befragten auf kulturelle Aspekte in der Community.

3.3 Policyebene: Regulierung, Aufbau von
Kapazitäten und Förderung

Nicht nur die Verbreitung von Open-Source-Software, auch das Bewusstsein für die
gesellschaftliche Bedeutung ihrer Sicherheit hat in den vergangenen Jahren zugenommen.
Das zeigt sich u. a. darin, dass Regulierung und Förderung in diesem Bereich — wenn auch
langsam und in begrenztem Umfang — vorangetrieben werden. Insbesondere IT-
Sicherheitsregulierung besteht in der Europäischen Union heute aus einem wachsenden
Geflecht aus Gesetzen, Standards und Normen. Nachdem Open-Source-Software darin
lange Zeit wenig Beachtung fand, ändert sich das zunehmend. Im Folgenden werden
Bestrebungen zur Regulierung und Förderung dargelegt und ausgelotet, wie diese dazu
beitragen, Social-Engineering-Angriffe in Open-Source-Softwareprojekten zu verhindern
und inwieweit dabei die Offenheit von Governance-Strukturen in Open-Source-Projekten
beeinflusst wird.

3.3.1 Gesetzgebung – Cyber Resilience Act
Einen Wendepunkt in der Regulierung von Open-Source-Software stellte der 2024
verabschiedete Cyber Resilience Act (CRA)52 dar, der Sicherheitsanforderungen für
kommerziell in der EU vertriebene Software- und Hardwareprodukte festlegt. Nachdem

http://data.europa.eu/eli/reg/2024/2847/oj
http://data.europa.eu/eli/reg/2024/2847/oj

Fokusbericht 01
Prototype Fund

20

53Eclipse Foundation (17.04.2023). Open Letter to the European Commission on the Cybr Resilience
Act. https://newsroom.eclipse.org/news/announcements/open-letter-european-commission-
cyber-resilience-act

54Bundesamt für Sicherheit in der Informationstechnik (o.D.). Codeanalyse von Open Source
Software (Projekt CAOS). https://www.bsi.bund.de/DE/Service-
Navi/Publikationen/Studien/Projekt_P486/projekt_P486_node.html

zunächst befürchtet wurde, dass Open-Source-Entwicklung umfassend von den
Regelungen des CRA betroffen sein würde,53 bleiben Entwickler*innen der meisten Open-
Source-Infrastrukturkomponenten von dem Gesetz zunächst unberührt. Nur die
Hersteller*innen und — in abgeschwächter Form — sogenannte Verwalter*innen
kommerziell vertriebener Software sind zur Einhaltung des CRA verpflichtet. Allerdings ist
von einem indirekten Effekt des CRA auf Module auszugehen, die in kommerziellen Open-
Source-Softwareprojekten zum Einsatz kommen; denn deren Hersteller*innen sind in
Zukunft für alle Komponenten, die in ihren Software- und Hardwareprodukten zum Einsatz
kommen, verantwortlich. Das bedeutet, dass sie bei der Auswahl von Open-Source-
Softwaremodulen voraussichtlich höhere Ansprüche an deren Sicherheitsmaßnahmen wie
die oben beschriebenen Governance-Strukturen stellen werden.

Diese Verantwortungszuweisung könnte einerseits dazu führen, dass Unternehmen, die
von Open-Source-Softwarekomponenten profitieren, mehr in deren Sicherheit investieren.
Andererseits besteht die Möglichkeit, dass in Projekten restriktivere Governance-
Strukturen eingefordert werden, um Ressourcen zu sparen, die für offene
Kollaborationsprozesse erforderlich sind. Zudem besteht das Risiko, dass gerade kleinere,
neue Open-Source-Projekte den neuen Anforderungen, die der CRA indirekt an sie stellt,
nicht gerecht werden können. Das hätte zur Folge, dass sie sich deutlich schwerer
etablieren und mit größeren Projekten um Ressourcen konkurrieren können, die für den
Aufbau einer offenen und sicheren Projekt-Governance notwendig sind. Insgesamt
erscheint der CRA als potenziell zweischneidiges Schwert, dass dem FOSS-Ökosystem
sowohl schaden als auch nutzen könnte.

3.3.2 Aufbau von Kapazitäten und ideelle Förderung
Flankiert werden die Verpflichtungen des CRA sowohl durch die Erarbeitung von Standards
als auch durch Handlungsempfehlungen und Vorschriften zur Umsetzung. Wichtige
Akteure sind in diesem Zusammenhang die Agentur der Europäischen Union für
Cybersicherheit (ENISA) sowie das BSI, deren Aufgabe es ist, IT-Sicherheit auf
europäischer Ebene beziehungsweise in Deutschland zu fördern. Unterstützung von
Entwicker*innen bei der Verbesserung von Sicherheitspraktiken speziell für Open-Source-
Softwareprojekte — insbesondere solche, die Infrastrukturkomponenten entwickeln —
haben diese staatlichen Organisationen bisher jedoch weder in Bezug auf den CRA noch
allgemein vertieft in den Blick genommen. Es überwiegt die Perspektive der
Softwarenutzenden wie das BSI-Projekt Codeanalyse von Open-Source-Software (CAOS)
zeigt. In dessen Rahmen werden Schwachstellen in Anwendungen identifiziert und
gemeldet, die vermehrt in Behörden und darüber hinaus zum Einsatz kommen.54 Es wird
hier weniger die Perspektive derer, die diese Anwendungen entwickeln und verwalten,
eingenommen.

https://newsroom.eclipse.org/news/announcements/open-letter-european-commission-cyber-resilience-act
https://newsroom.eclipse.org/news/announcements/open-letter-european-commission-cyber-resilience-act
https://www.bsi.bund.de/DE/Service-Navi/Publikationen/Studien/Projekt_P486/projekt_P486_node.html
https://www.bsi.bund.de/DE/Service-Navi/Publikationen/Studien/Projekt_P486/projekt_P486_node.html

Fokusbericht 01
Prototype Fund

21

55Fahey, Elaine (2024). The evolution of EU-US cybersecurity law and policy: on drivers of
convergence, Journal of European Integration 46(7), S. 1073-1088.
https://doi.org/10.1080/07036337.2024.2411240

56Cybersecurity and Infrastructure Security Agency (2023). CISA Open Source Software Security
Roadmap. https://www.cisa.gov/sites/default/files/2024-02/CISA-Open-Source-Software-
Security-Roadmap-508c.pdf

57OpenSSF (07.03.2024). OpenSSF and CISA Join Forces to Secure Open Source Software, OpenSSF
Blog. https://openssf.org/blog/2024/03/07/openssf-and-cisa-join-forces-to-secure-open-
source-software/

58OpenSSF (31.01.2025). Linux Foundation Europe and OpenSSF Launch Initiative to Prepare
Maintainers, Manufacturers, and Open Source Stewards for Global Cybersecurity Legislation,
OpenSSF Blog. https://openssf.org/press-release/2025/01/31/linux-foundation-europe-and-
openssf-launch-initiative-to-prepare-maintainers-manufacturers-and-open-source-stewards-
for-global-cybersecurity-legislation/

59Blume, Aaron; Orbe, Andres; Garcia, Glenda; Navani, Saumya (o.D.). Experiences from the Alpha-
Omega Mentorship Program Mentees, Alpha-Omega Blog, Stand: 01.06.2025. https://alpha-
omega.dev/blog/experiences-from-the-alpha-omega-mentorship-program-mentees/

60OpenSSF (2025, S. 18). Alpha-Omega Annual Report 2024. https://alpha-omega.dev/wp-
content/uploads/sites/22/2025/01/Alpha-Omega-Annual-Report-2024_012925.pdf

In den USA, wo Soft Law wie Leitlinien und Standards etablierte Instrumente für IT-
Sicherheitsregulierung sind, ist das anders.55 Die Cybersecurity and Infrastructure
Security Agency (CISA), das amerikanische Äquivalent zur ENISA, hat 2023 eine Roadmap
für Open-Source-Softwaresicherheit verabschiedet und erarbeitet in Kooperation mit
Open-Source-Communities und -Organisationen Best Practices.56

Ein wichtiger Partner für die CISA ist dabei die in erster Linie durch Unternehmen
finanzierte Linux Foundation beziehungsweise deren OpenSSF.57 Auch für die Umsetzung
des CRA arbeiten die Linux Foundation und die OpenSSF seit Januar 2025 im Rahmen einer
Initiative an Unterstützungsmaßnahmen für Entwickler*innen von Open-Source-Software
wie Standards, Best Practices und Schulungsmaterialien.58 Weitere Maßnahmen, um die
Sicherheit von Open-Source-Software zu verbessern, entwickelt die OpenSSF im Rahmen
ihres Projekts Alpha Omega. Dazu zählte in der Vergangenheit beispielsweise ein
Mentorship-Programm für Nachwuchsentwickler*innen und Sicherheitsforschende59 oder
Codeanalysen mit dem Ziel, Schwachstellen zu identifizieren und zu melden. Die
Identifikation von Schwachstellen wurde von Entwickler*innen jedoch gemischt
aufgenommen, weil in den betroffenen Projekten häufig keine ausreichenden personellen
Kapazitäten zur Verfügung standen, um die gemeldeten Schwachstellen zu beheben. Aus
diesem Grund priorisierte Alpha Omega im Anschluss Maßnahmen, die insbesondere kleine
Teams konkret bei der Betreuung ihrer Projekte unterstützen könnten, wie z. B. technische
Mittel zur Automatisierung von Routineaufgaben.60 Auf diese Weise könnten sie eine
breitere Umsetzung der in Abschnitt 3.1 beschriebenen Best Practices ermöglichen.

Den Aufbau von Kapazitäten für die Etablierung von Sicherheitsstandards in Open-Source-
Projekten unterstützen staatliche Akteure auf EU-Ebene und in Deutschland bisher kaum.
Insofern nehmen sie keinen Einfluss auf die Offenheit von Governance-Strukturen in

https://doi.org/10.1080/07036337.2024.2411240
https://www.cisa.gov/sites/default/files/2024-02/CISA-Open-Source-Software-Security-Roadmap-508c.pdf
https://www.cisa.gov/sites/default/files/2024-02/CISA-Open-Source-Software-Security-Roadmap-508c.pdf
https://openssf.org/blog/2024/03/07/openssf-and-cisa-join-forces-to-secure-open-source-software/
https://openssf.org/blog/2024/03/07/openssf-and-cisa-join-forces-to-secure-open-source-software/
https://openssf.org/press-release/2025/01/31/linux-foundation-europe-and-openssf-launch-initiative-to-prepare-maintainers-manufacturers-and-open-source-stewards-for-global-cybersecurity-legislation/
https://openssf.org/press-release/2025/01/31/linux-foundation-europe-and-openssf-launch-initiative-to-prepare-maintainers-manufacturers-and-open-source-stewards-for-global-cybersecurity-legislation/
https://openssf.org/press-release/2025/01/31/linux-foundation-europe-and-openssf-launch-initiative-to-prepare-maintainers-manufacturers-and-open-source-stewards-for-global-cybersecurity-legislation/
https://alpha-omega.dev/blog/experiences-from-the-alpha-omega-mentorship-program-mentees/
https://alpha-omega.dev/blog/experiences-from-the-alpha-omega-mentorship-program-mentees/
https://alpha-omega.dev/wp-content/uploads/sites/22/2025/01/Alpha-Omega-Annual-Report-2024_012925.pdf
https://alpha-omega.dev/wp-content/uploads/sites/22/2025/01/Alpha-Omega-Annual-Report-2024_012925.pdf

Fokusbericht 01
Prototype Fund

22

61Ruohonen, Jukka; Choudhary, Gaurav; Alami, Adam (2025). An Overview of Cyber Security Funding
for Open Source Software, Stand: 29.04.2025. https://doi.org/10.48550/ arXiv.2412.05887

62Sovereign Tech Agency (o. D.). Sequoia PGP (2022), Stand: 22.07.2025. https://www.sovereign.
tech/tech/sequoia-pgp-2022

63Sovereign Tech Agency (o. D.). Python Package Index, Stand: 22.07.2025. https://www.sovereign.
tech/tech/python-package-index

64Sovereign Tech Agency (o. D.). Eclipse Foundation, Stand: 22.07.2025. https://www.sovereign.

Open-Source-Projekten. Als relevanter staatlicher Akteur tritt dagegen die US-
amerikanische CISA auf. Sie arbeitet intensiv mit der Linux Foundation zusammen, eine
nicht-staatliche Organisation, die die Perspektive von Open-Source-Entwickler*innen
vertreten und selbst Sicherheitsstandards mit Blick auf offene Entwicklungsprozesse
vorantreiben.

3.3.3 Finanzielle Förderung von Softwareinfrastruktur
Um sicherheitsrelevante Governance-Mechanismen und sonstige Best Practices so
umzusetzen, dass der für Open-Source-Software charakteristische offene und
kollaborative Entwicklungsprozess erhalten bleibt, ist eine gezielte Finanzierung
unabdingbar. Auch in diesem Bereich sind ein langsam wachsendes Problembewusstsein
und Interesse sowohl bei staatlichen Akteur*innen als auch bei Unternehmen zu
beobachten. Das zeigt sich in neueren Fördermaßnahmen, wie beispielsweise der
Sovereign Tech Agency (STA), die 2022 als Sovereign Tech Fund ins Leben gerufen wurde
und durch das Bundesministerium für Wirtschaft und Energie finanziert wird. Ein weiteres
Förderbeispiel, das durch Unternehmen gefördert wird, ist das Projekt Alpha Omega, das
ebenfalls 2022 startete und von Unternehmen wie Amazon Web Services, Google und
Microsoft getragen wird.

Um diese Ziele zu erreichen, wählen STA und Alpha Omega strategisch Projekte aus, die
als besonders sicherheitsrelevant erachtet werden. Entscheidend dafür ist etwa, dass die
Software, um deren Entwicklung es geht, in besonders vielen oder wichtigen anderen
Softwareprojekten zum Einsatz kommt und dass die finanzierten Entwicklungstätigkeiten
zu mehr Sicherheit beitragen. Unterstützt werden deshalb, anders als bei vielen anderen
Fördermaßnahmen, nicht nur die Entwicklung neuer Features, sondern auch Tätigkeiten
wie Codeüberarbeitung, Tests und Fehlerbehebung oder Dokumentation und Bildung.61
Empfänger*innen der Förderung sind meist Vereine oder Stiftungen wie die OpenJS
Foundation oder die Eclipse Foundation, die die Entwicklung großer Open-Source-Projekte
unterstützen.

Auch fördern STA und Alpha Omega regelmäßig Best Practices zur Vermeidung von Social-
Engineering. Unter den Förderprojekten der STA fallen insbesondere Projekte auf, die
Open-Source-Communities durch technische Mittel dazu befähigen sollen, die
Vertrauenswürdigkeit von Beiträgen zu überprüfen. Beispielsweise wurden mit
Unterstützung der STA die Projekte Sequoia PGP62 und Sigstore63 weiterentwickelt, mit
denen Entwickler*innen Codebeiträge und Softwarepakete signieren können. Den Umgang
mit Schwachstellen durch automatisierte Erkennung und Managementsysteme zu
unterstützen, steht im Fokus einer Förderung der Eclipse Foundation.64 Ein Schwerpunkt

https://doi.org/10.48550/arXiv.2412.05887
https://www.sovereign.tech/tech/sequoia-pgp-2022
https://www.sovereign.tech/tech/sequoia-pgp-2022
https://www.sovereign.tech/tech/python-package-index
https://www.sovereign.tech/tech/python-package-index
https://www.sovereign.tech/tech/eclipse-foundation

Fokusbericht 01
Prototype Fund

23

tech/tech/eclipse-foundation

65Alpha Omega (2025). Alpha Omega 2024 Annual Report. https://alpha-omega.dev/wp-
content/uploads/sites/22/2025/01/Alpha-Omega-Annual-Report-2024_012925.pdf

66Milton, Tom; Osborne, Cailean; Pickering, Matt (17.04.2024). A UK Open-Source Fund to Support
Software Innovation and Maintenance, Centre for British Progress. https://britishprogress.org/
uk-day-one/a-uk-open-source-fund-to-support-software-innovati

67Gates, Nicholas; Tridgell, Jennifer; Torraco, Rosa Maria; Schwäbe, Carste; Reda, Felix; Hummler,
Andreas; Streinz, Thomas; Nummelin Carlberg, Astor; Blind, Knut (2025). Funding Europe‘s Digital
Infrastrucuture: A Study on the Economic, Legal, and Political Feasibility of an EU Sovereign Tech
Fund (EU-STF), Open Forum Europe (Hrsg.). https://eu-stf.openforumeurope.org/wp-
content/uploads/2025/08/EU-STF-Feasibility-Study_final.pdf

von Alpha Omega liegt dagegen in der Finanzierung von Personen, deren Aufgabe es ist,
die Sicherheitskultur in ihren Projekten zu stärken, indem sie bestehende
Sicherheitspraktiken in konkreten Open-Source-Projekten formalisieren, neue Prozesse
etablieren und Projekt-Communities im Umgang mit Sicherheitsrisiken schulen. Im Jahr
2024 entfielen 63% der Fördergelder von Alpha Omega auf sogenanntes
Sicherheitspersonal, z. B. in Projekten der Python Software Foundation. Diesen Einsatz von
Fördergeldern hat Alpha Omega als den effizientesten identifiziert.65

Der Förderansatz der STA und von Alpha Omega trägt dazu bei, Sicherheit und Offenheit
miteinander in Einklang zu bringen. In Übereinstimmung mit dem Ziel, kritische
Infrastruktur zu finanzieren, werden in erster Linie große, etablierte Projekte finanziert,
deren Entwicklung beispielsweise von einem Verein oder einer Stiftung unterstützt wird.
Wie der xz-Utils-Angriff zeigt, können allerdings auch auf weniger etablierte Open-Source-
Projekte mit kleinen Projekt-Communities so viele andere Softwareprojekte aufbauen,
dass Angriffe auf ihre Sicherheit weitreichende Folgen haben. Ein echter Wandel hin zu
mehr Sicherheit und Offenheit würde eine massive Steigerung der Finanzierung für Open-
Source-Infrastrukturkomponenten voraussetzen. Gefordert werden deshalb neue
Fördermaßnahmen mit ähnlicher Ausrichtung beispielsweise in Großbritannien66 und auf
europäischer Ebene.67 Auch der Prototype Fund fördert seit 2024 ausschließlich Projekte
mit Schwerpunkt auf Datensicherheit und Softwareinfrastruktur und geht damit, als
bereits existierende Fördermaßnahme in eine ähnliche Richtung.

3.3.4 Übergeordnete Kommentare zu Herausforderungen aus
Workshop und Interviews
Um übergeordnete Maßnahmen weiter in den Kontext des Prototype Fund einordnen zu
können, fassen wir im Folgenden ein Stimmungsbild von den unterschiedlichen
Akteuer*innen im Feld zusammen, das sich auf das FOSS-Ökosystem bezieht — von
Maintainer*innen aus den Interviews und von Personen, die am Workshop teilgenommen
haben.

Unterschiedliche Betroffenengruppen entlang der Softwarelieferkette erfordern
unterschiedliche Ansprachen und Maßnahmen. Aufgrund der heterogenen
Teilnehmenden-Gruppe wird im Workshop insbesondere deutlich, wie viele Akteur*innen
auf verschiedenen Ebenen die Thematik betrifft. Entlang der Softwarelieferkette

https://www.sovereign.tech/tech/eclipse-foundation
https://alpha-omega.dev/wp-content/uploads/sites/22/2025/01/Alpha-Omega-Annual-Report-2024_012925.pdf
https://alpha-omega.dev/wp-content/uploads/sites/22/2025/01/Alpha-Omega-Annual-Report-2024_012925.pdf
https://britishprogress.org/uk-day-one/a-uk-open-source-fund-to-support-software-innovati
https://britishprogress.org/uk-day-one/a-uk-open-source-fund-to-support-software-innovati
https://eu-stf.openforumeurope.org/wp-content/uploads/2025/08/EU-STF-Feasibility-Study_final.pdf
https://eu-stf.openforumeurope.org/wp-content/uploads/2025/08/EU-STF-Feasibility-Study_final.pdf

Fokusbericht 01
Prototype Fund

24

68Russ Allbery (o.D.). Re: Validating tarballs against git repositoties, List Debian, Stand: 19.11.2025.
https://lists.debian.org/debian-devel/2024/03/msg00377.html

verändern sich die Betroffenen der Angriffe: von Maintainer*innen, die die
Softwarebausteine verantworten, über Expert*innen-Nutzer*innen, die
Softwarebausteine verbauen, bis hin zu Laien-Nutzer*innen, die die Software, in der die
entsprechenden Bausteine verbaut sind, nutzen. Von Teilnehmenden wird unterstrichen,
dass die Maßnahmen zur Verhinderung von Angriffen an die unterschiedlichen
Betroffenengruppen angepasst werden müssten. Dabei sollten bestehende Unterschiede
in Bezug auf Expertise und Verbindung zur Software entsprechend berücksichtigt werden.

Auswirkungen des Balanceakts zwischen übermäßiger und angemessener Vorsicht
für das FOSS-Ökosystem. Im Workshop kam immer wieder auf, dass möglicherweise
betroffene Teilnehmende sich fortwährend die Frage stellen, ob sie kompromittierte
Softwarebausteine nutzten, ohne dies zu bemerken. Damit ging auch die Frage einher, wo
der Kipppunkt zwischen übermäßiger Vorsicht und angemessener Skepsis liege und wie
dies die Zusammenarbeit beeinflusse. Auch in den Interviews wurde darauf hingewiesen,
dass man versuche, Beitragenden nicht zu viel Skepsis entgegen zu bringen und darüber
hinaus Reviews schnell durchführen wolle, um den sonst daraus resultierenden Frust zu
vermeiden. Ein*e weitere*r Projektverantwortliche*r verweist im Interview darauf, dass
mit Social-Engineering-Angriffen der Kern der gemeinsamen Arbeit an Projekten angriffen
werde und zitiert den Debian-Developer Russ Allbery:„The hardest part about defending
against social engineering is that it doesn't attack attack (sic) the weakness of a
community. It attacks its *strengths*: trust, collaboration, and mutual assistance.“68

Skepsis und Vertrauen stehen sich gegenüber und müssen immer wieder neu in Balance
gebracht werden, während eine absolute Sicherheit unerreichbar ist. Auch wenn das
Verantwortungsgefühl von Projektverantwortlichen immer wieder unterstrichen wird, ist
nicht zuletzt in der Freiwilligenarbeit an FOSS-Projekten eine Atmosphäre, in der man
gerne zusammenarbeitet, ein wichtiger Aspekt, der in der Entwicklung von Maßnahmen
nicht übersehen werden sollte.

Strukturelle Aspekte erschweren die Abwehr von Social-Engineering Angriffen. Sowohl
im Workshop, als auch in den Interviews werden unterschiedliche strukturelle Aspekte
erwähnt, die die Abwehr von Angriffen erschweren. Dazu gehört, dass es deutlich länger
dauere Code zu überprüfen und Fehler oder Schadcode zu finden, als es dauere, diesen
Code zu schreiben. Darüber hinaus sind vor allem staatlich finanzierte Angreifer*innen
übermäßig gut mit Ressourcen ausgestattet. Andere Aspekte betreffen das FOSS-
Ökosystem. Software würde immer komplexer und schwieriger nachzuvollziehen,
aufgrund von vielen Dependencies, aber beispielsweise auch durch nicht nachvollziehbare
Outputs von Algorithmen. Diese Komplexität erschwere auch das Überprüfen der Software
zu Sicherheitszwecken. Außerdem würden Übersichtlichkeit, eine verlässliche Normierung
von Software und verlässliche Institutionen fehlen. Diese Unsicherheit und immer weiter
zunehmende Komplexität in der Infrastruktur potenziere sich so.

Notwendigkeit von politischem und wirtschaftlichem Willen, Ressourcen aufzubauen.
Der politische sowie ökonomische Wille, dem Risiko etwas entgegenzusetzen, wird als
unzureichend bewertet. Dieser stehe weder in Relation zum bestehenden Risiko, noch zum

https://lists.debian.org/debian-devel/2024/03/msg00377.html

Fokusbericht 01
Prototype Fund

25

Nutzen von FOSS für Unternehmen und Gesellschaft. Mehrfach wurde unterstrichen, dass
Unternehmen und andere Organisationen die Gefährdung durch Lieferkettenangriffe als
deutlich zu gering einschätzten. Erst konkrete Vorfälle würden dazu führen, dass
Maßnahmen ergriffen werden, außerdem würden keine ausreichenden Investitionen
getätigt. Sowohl Unternehmen, die FOSS nutzen, als auch öffentliche Stellen sollten daher
deutlich höhere Rückführungen von Ressourcen in FOSS als Infrastruktur tätigen.
Entsprechend der vielen betroffenen Ebenen, seien wesentlich mehr und insbesondere
koordinierte Aktionen notwendig, um bestehende Maßnahmen aufeinander abzustimmen
und entsprechende Lücken zu schließen. Das gelte nicht zuletzt, weil sich die Grenzen von
ehrenamtlicher Arbeit und intrinsischer Motivation zeigen, wenn es um die langfristige
Sicherung kritischer Softwareinfrastruktur geht, und auch, um nachhaltige Governance
und institutionelle Unterstützung sicherstellen zu können.

4 Fazit

Social-Engineering-Angriffe und in Konsequenz Angriffe auf Softwarelieferketten finden
in einem komplexen sozialen Ökosystemen statt. Wir haben in diesem Bericht anhand des
xz-Utils-Fall in das Thema eingeführt und Maßnahmen, die sich auf unterschiedlichen
Ebenen des Ökosystems abspielen, beleuchtet — auf der Projektebene, in Bezug auf die
Gestaltung von Plattformen zur kollaborativen Entwicklung von Software, so wie
Regulierung und Förderung. Aus den Interviews mit Projektverantwortlichen und dem
Workshop mit Communitymitgliedern wird weiter deutlich: Open-Source-Projekte sind
soziale, vernetzte, aufeinander aufbauende, inhärent kooperative Projekte. Maßnahmen,
die dies nicht beachten, gefährden unter Umständen wichtige Funktionen im FOSS-
Ökosystem und versprechen weniger Erfolg, als kulturell sensitive Ansätze die das gesamte
Ökosystem berücksichtigen. Ein gesundes FOSS-Ökosystem ermöglicht resilientere
Projekte. Die Interviews verweisen beispielsweise darauf, dass persönliche Treffen auf
Events Vertrauen schaffen. Gleichzeitig wird darauf hingewiesen, dass etablierte
Institutionen fehlen, die strukturelle Probleme, wie beispielsweise fehlende Normierungen
und die Koordination von Maßnahmen gegen Lieferkettenangriffe auf unterschiedlichen
Ebenen koordinieren können. Zuletzt geht auch aus der Interviews hervor, dass
Ressourcenbedarf für die Förderung zu Sicherheitsmaßnahmen besteht.

Daran anschließend stellt sich die Frage: Hängt am Ende doch alles von der Finanzierung
ab? Theoretisch ja, und wie beschrieben gibt es Beispiele, die zeigen, dass es in dieser
Hinsicht zu einem Umdenken sowohl bei staatlichen und philanthropischen als auch bei
privatwirtschaftlichen Akteur*innen kommt. Allerdings ist fraglich, ob angesichts der neuen
Herausforderungen durch automatisiert erstellte Open-Source-Beiträge sowie politisch
und wirtschaftlich motivierten Angreifenden eine Finanzierung bereitgestellt werden kann,
die ausreicht, um Offenheit und Sicherheit in der Breite zu ermöglichen. In Zukunft wird
deshalb auszuhandeln sein, welche Einschränkungen offener Entwicklungspraktiken
innerhalb von Open-Source-Softwareprojekten akzeptabel sind, um Sicherheit zu
gewährleisten, ohne die verfügbaren personellen Ressourcen in der Projekt-Community
zu überbeanspruchen. Eine wichtige Frage ist in diesem Zusammenhang, unter welchen
Umständen es vertretbar ist, Beitragende aus Sicherheitserwägungen von der Mitarbeit

Fokusbericht 01
Prototype Fund

26

an einem Projekt auszuschließen. Insbesondere das Verhältnis zwischen den
Moderationspraktiken von Projekt-Communities und Softwareentwicklungsplattformen
gilt es dabei zu bewerten.

Zur Zeit werden mit Blick auf Sicherheit in erster Linie etablierte Open-Source-Projekte
finanziert, die für besonders kritische Bestandteile der Softwarelieferkette erachtet
werden. Zielgerichtete Unterstützung für den Ausbau von Sicherheitsmaßnahmen fehlt
insbesondere für kleinere und neuere Projekte. Sie könnten vom Ausbau technischer
Sicherheitsmaßnahmen wie z. B. leicht benutzbarer Software zum Signieren von Code
profitieren. Neben der Entwicklung dieser Tools, ist es gleichermaßen wichtig, dass es
gefördert wird, dass sich diese etablieren. Eine weitere Unterstützung könnten Best-
Practice-Leitfäden und Standards darstellen, die dem Entwicklungsstand eines Projekts
angepasst sind und sich auch mit geringen personellen Ressourcen umsetzen lassen. Die
besonderen Herausforderungen von Open-Source-Entwicklung in Bezug auf Sicherheit,
wie beispielsweise durch Social-Engineering-Angriffe, nehmen bisher jedoch nur wenige
Organisationen in den Blick. Damit auch neue Ansätze für eine offene und sichere
Softwareinfrastruktur eine Chance haben Verbreitung zu finden, muss ein Gleichgewicht
gefunden werden, zwischen der Unterstützung etablierter Projekte einerseits und
kleinerer, unbekannterer Projekte sowie dem FOSS-Ökosystem andererseits.

Fokusbericht 01
Prototype Fund

27

Prototype Fund
Open Knowledge Foundation Deutschland e. V.
Singerstr. 109
10179 Berlin

info@prototypefund.de
www.prototypefund.de

Der Prototype Fund ist das erste niedrigschwellige Förderprogramm für freie
Entwickler*innen, die in Deutschland innovative Open-Source-Software aus der
Gesellschaft und für die Gesellschaft entwickeln. Die auch als „Software Sprint“ bekannte
Maßnahme existiert seit 2017. Das Förderprogramm wurde neu aufgelegt und wird bis
2029 in vier Jahrgängen ungefähr 100 Softwareprojekte auf ihrem Weg von der Idee zum
Softwareprototypen begleiten.

Nutzer*innen sind nicht nur Konsument*innen von Software sondern oft auch
Expert*innen: Diese Schnittmenge nutzen wir und bieten der technisch versierten
Zivilgesellschaft Zugang zu den Ressourcen und Prozessen, die nötig sind, um sich im Sinne
des Gemeinwohls einzubringen. Gefördert werden ausschließlich Softwareprojekte mit
gesellschaftlichem Mehrwert, die die Bedürfnisse der Nutzer*innen in den Mittelpunkt
stellen und als Open-Source-Software frei verfügbar, nachhaltig zugänglich sowie
anpassbar sind. Der Schwerpunkt der Förderung liegt auf Datensicherheit und Software-
Infrastruktur.

Ein Projekt der:

Gefördert durch:

Förderkennzeichen: 16IS24086

Danksagung
Wir bedanken uns bei unseren Interviewpartner*innen und den Teilnehmenden des
Workshops für die Einblicke und ihre Großzügigkeit mit ihrer Zeit.

Januar 2026

http://www.prototypefund.de
https://www.prototypefund.de/blog/der-prototype-fund-geht-weiter-und-wie
https://www.prototypefund.de/software-infrastruktur
https://www.prototypefund.de/datensicherheit
https://www.prototypefund.de/software-infrastruktur

	

	Fokusbericht 01

	20.01.2026

	Sophia Schulze Schleithoff & Judith Fassbender

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	Inhalt

	1 Einleitung

	Überblick und Vorgehen des Berichts

	Interviews und Workshop

	2 Social-Engineering als Angriffsmuster in der kollaborativen Softwareentwicklung

	Neue Angriffsmuster in Open-Source-Projekten

	Offenheit vs. Sicherheit?

	3 Maßnahmen zur Risikoreduktion

	3.1 Projektebene: Governance in Open-Source-
 Projekten

	3.1.1 Regeln und Strukturen

	Implementierung von Regeln und Strukturen in Open-Source-Projekten

	3.1.2 Technische Sicherheitsmaßnahmen

	Implementierung von technischen Sicherheitsmaßnahmen in Open-Source-Projekten

	3.1.3 Projektpraxis in vom Prototype Fund geförderten Projekten

	3.2 Plattformebene: Sicherheitsfokussierte Gestaltung von Softwareentwicklungs- plattformen am Beispiel von GitHub

	3.2.1 Moderation

	3.2.2 Reputationsmechanismen

	

	3.2.3 Bedürfnisse in durch den Prototype Fund geförderten
 Projekten

	3.3 Policyebene: Regulierung, Aufbau von Kapazitäten und Förderung

	3.3.1 Gesetzgebung – Cyber Resilience Act

	3.3.2 Aufbau von Kapazitäten und ideelle Förderung

	3.3.3 Finanzielle Förderung von Softwareinfrastruktur

	3.3.4 Übergeordnete Kommentare zu Herausforderungen aus Workshop und Interviews

	4 Fazit

